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Abstract. We describe a semantic data validation tool that is capable of observing 
incoming real-time sensor data and performing reasoning against a set of rules specific to 
the scientific domain to which the data belongs. Our software solution can produce a 
variety of different outcomes when a data anomaly or unexpected event is detected, 
ranging from simple flagging of data points, to data augmentation, to validation of 
proposed hypotheses that could explain the phenomenon. Hosted on the Jena Semantic 
Web Framework, the tool is completely domain-agnostic and is made domain-aware by 
reference to an ontology and Knowledge Base (KB) that together describe the key 
resources of the system being observed. The KB comprises ontologies for the sensor 
packages and for the domain; historical data from the network; concepts designed to 
guide discovery of internet resources unavailable in the local KB but relevant to 
reasoning about the anomaly; and a set of rules that represent domain expert knowledge 
of constraints on data from different kinds of instruments as well as rules that relate types 
of ecosystem events to properties of the ecosystem. We describe an instance of such a 
system that includes a sensor ontology, some rules describing coastal storm events and 
their consequences, and how we relate local data to external resources. We describe in 
some detail how a specific actual event---an unusually high chlorophyll reading---can be 
deduced by machine reasoning to be consistent with being caused by benthic diatom re-
suspension, consistent with being caused by an algal bloom, or both.
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Introduction
Deciding whether a sensor reading is unexpected, and if so whether it represents a system 

failure or, instead, an event of unusual interest requires testing against not only design parameters 
of the instrument, but also testing against models of the expected behavior of the system under 
measurement. There is a long history of addressing this question in industrial control and safety-
critical systems (Del Gobbo et al., 1998). Recently, with the rapidly decreasing cost of wireless 
sensor networks for ecological study, the issue has attracted the attention of computer scientists 
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(Peng, 2009).  The high rates at which wireless sensor networks can deliver data and the great 
volume of data the scientific community will therefore be faced with, suggest a need for a 
software solution to the problem of distinguishing sensor failures from interesting observations. 
Our work demonstrates that reasoning based on formal ontologies can assist in that task. The 
approach allows scientists to put forth formal models for physical properties being measured, and 
decide whether one or another explanation is logically consistent with the model and the 
measurements. 

Our software relies on several components that work together to form a domain-agnostic 
data reasoning system. Its current configuration comprises a system for reasoning about coastal 
storm events, and data about them gathered by a wireless sensor network.

Our original implementation treated only the simple case of validating hypotheses of 
potential sensor failure.  A simple example of sensor failure might be the return of values known 
to be out of the range of possible values specified by the sensor manufacturer.  For example, let 
us assume that a certain model of   temperature sensor has the physical limitation of never being 
able to take a measurement lower than -30 °C. In widely used rule notation with variables denoted 
with '?', we can express this formally as

[model37 range check: 

(?s type Model37_TemperatureSensor), 

(?s hasTakenMeasurement ?m),

(?m value ?v),

lessThan(?v, -30) → 

(?s hasOutOfRangeViolation ?m) ]

The above rule expresses to the reasoning system “If s is a Model37 Temperature sensor 
and s has taken measurement m and m has value v and v is less than minus 30, then s might be out 
of range for reporting m.”  Use of the word might here is not incidental. Reasoning systems such 
as we describe are essentially constrained to examining their internal consistency, the consistency 
of their data with their models, and—of central interest to this work—the consistency of 
additional hypotheses about those models and data.  Thus, they form a useful framework for 
evidence-based examination of hypotheses and models. 

Modeling of sensor data with ontology has been approached before (Eid et al., 2006) but 
that work does not provide any framework for considering sensors as signalers of events.  To 
describe events, the sensor data requires a range of values upon which arithmetic computations 
can be performed.  However, because the now standard Web Ontology Language (OWL, 2004), 
is unable to express any constraints on numeric bounds of a data type field, a reasoner validating 
only against the ontology would fail to detect any inconsistency.  This paper describes how we 
have added ontology-based rules to allow scientists to offer science-driven hypotheses about the 
cause of anomalous sensor network reports.  To model hardware in use at the University of 
Massachusetts-Boston Center for the Study of Coastal Environmental Sensor Networks (CESN), 
the CESN ontology (CESN Sensor Ontology, 2008) provides concepts about sensors and their 
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deployments as seen by middleware responsible for database persistence.  For this work, we have 
extended it to contain concepts about events that may occur during storms. The ontology is 
unconcerned with the sensor network logical or physical topology, or issues of intermediate 
aggregation within the sensor network.  A second component is a local Knowledge Base of facts 
describing particular CESN instrument deployments as instances of classes defined in the 
ontology.  A third, more novel, component is a collection of rule sets which represent the domain 
specific knowledge and hypotheses of scientists, in our case, oceanographers.  Rules can be added 
to the software system dynamically and the Jena (Jena, 2009a) reasoner will signal whether they 
contradict the current state of knowledge in the system (i.e. the rules and facts).  The final 
component is a KB supporting discovery and acquisition of data from resources other than our 
own, such as NOAA weather stations, guided by concepts from the ontology. For example, our 
simple ocean event ontology discussed later requires wind and wave data (or at least the value of 
attributes of the wind and waves at the time of the event), but our instruments provide no such 
information. (In the present implementation, we import this data statically, but the software is 
agnostic about its source, and future work will launch semantically based web searches to 
discover it.) 

Our sensor systems push their collected data to the internet using a web service interface. 
Behind the web service our reasoning platform validates and applies domain knowledge rules on 
incoming data.  Rules, with associated actions, applicable to the incoming data are supplied to the 
reasoner, which decides whether any conditions of the rules are met or fail to be met and trigger 
the associated action.  Actions can include such things as tagging the data (e.g., as anomalous), 
putting it in a separate data store, or generating a notification to other software or to a human.  

Background on Knowledge Representation
An ontology can be described as a representation of concepts within a certain domain of 

knowledge and the relationship between those concepts (Antoniuo and Harmelen, 2004). The 
notions that the OWL language uses to express an ontology are shared by most ontology 
languages. These include: classes, instances and properties (sometimes called attributes or 
predicates).  Classes represent the concepts of a knowledge domain.  Hierarchies among classes 
are represented by subclass relationships.  Properties are used to establish relationships between 
concepts or between concepts and primitive data types such as numeric data.  Individuals are 
instances of classes (Fig. 1).  It might have been tempting to implement reasoning about sensor 
data purely with the use of an Object Oriented Programming (OOP) language such as Java. 
However, not only are there a number of reasoning engines available for OWL, but also, unlike in 
OOP, a class in OWL need not be defined by the sum of its properties.  This makes ontology-
based models particularly suitable for eco-informatics, because ecosystems—indeed most natural 
systems—exhibit many individual exceptions to the applicability of attributes that may form 
important parts of models.

A semantic reasoner is a software program capable of 
making or validating inferences based on sets of rules and facts 
expressed using the concepts of an ontology and the 
mathematical formalism known as first order logic.  This has 
simple mechanisms for deducing whether statements are true or 
false, starting with a set of axioms and rules. This, too, 
corresponds closely to the way most scientific inquiry proceeds. 
The inquiry starts with a set of hypothetical facts---whose 
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acceptance is bolstered by observation---and a set of rules for reasoning about those facts. The 
latter are really a kind of model, sometimes formally so.  Within first order logic, a rule takes the 
general form of Ρ 1, …, Ρ n → Q where the Pi, and Q are predicates (i.e. statements that are either 
true or false), and the arrow denotes logical implication. For example, a coastal ecosystem model 
might have a rule which says in plain language:  “If water level is low and winds are high, 
sediment suspension will happen.”  This can be represented logically as low(waterlevel), 
high(winds) → occurred(sediment suspension).  Given a set of facts and rules, a reasoner can find 
logical paths for new facts, validate those attributed to new observations, or even propose which 
existing rules and facts are inconsistent with the new observations.  For use in machine reasoning 
or semantic modeling, there are special rule languages. Among the widely used ones are RuleML 
(2006), SWRL (Horrocks, 2004) and one that is utilized in our software from the Jena framework 
for semantic processing, Jena RL (Jena, 2007a). 

CESN: An Ontology of Sensors and their Measurements

The purpose of the CESN sensor ontology is to describe the relationships between 
sensors and their measurements.  The main concepts found in the CESN sensor ontology are 
similar to the terminology described in SensorML (2007) and to some of those emerging in the 
Marine Metadata Interoperability device ontology project (MMI, 2009), and CSIRO Sensor 
Ontology (CSIRO, 2009). These and several others are under scrutiny by the W3C Semantic 
Sensor Incubation Group (W3C, 2009a) with the active participation of their developers, and the 
entire subject of semantically enabled sensors is in its infancy (CEUR-WS, 2009; Sheth and 
Hanson, 2008).

As shown in Fig. 2, the core concepts in the CESN sensor ontology are the physical 
sensor devices themselves, Sensor; the PhysicalProperty that a Sensor can measure; and the 
measurement that a sensor has taken, PhysicalPropertyMeasurement.  Not shown are important 
constraints, expressed in OWL, on this core.  For example, a Sensor object can measure only one 
physical property. Objects that can contain Sensors and so measure more than one physical 
property are modeled by a class named Instrument.  In turn, an instrument is usually deployed on 
some kind of Platform, which typically constrains its relationship to the environment in which it 
is deployed. Also not shown is the class Deployment, which represents the deployment of an 
instrument at a particular time and place, and so can be used to relate instrument readings to 
expected or unexpected events putatively signaled by the data modeled by the structure sketched 
in Fig. 2.  A more detailed depiction of the core ontology is shown in Fig. 7.

Deployment attributes of individual instruments is 
particularly important in the real world of movable 
instruments.  For example, it might be critical to know in 
advance of deployment whether an instrument package can 
be deployed underwater and to what depth. However, in 
this work we have no discussion of the Instrument, 
Platform, or Deployment because our focus, and the 
present software and rules, are agnostic about the origin of 
the data. As we shall see shortly, the rules in this case have 
no terms involving those classes.  (Strictly speaking, this 
alone does not guarantee logical independence from those 
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classes, but an explication would require detailed discussion of inferred vs. stated relationships, 
which is beyond the scope of this paper, other than for our motivating example.)

Semantic Data Validation and Inferences

Fig. 3 depicts the principal components 
of the CESN reasoner and the data flow between 
them. Gateway hosts G receive data from 
instruments I via radios R or other 
communications channels. These forward data to 
a Reasoning Invocation Host, G*, which invokes 
our system via a web interface.  Incoming sensor 
data, data requested by the system from other 
web services, and inferred data produced by the 
Semantic Reasoner are persisted as facts in a 
MySQL database through Jena’s Model 

interface.  The Model is a convenient programming abstraction for easily managing instances. 
The reasoner component of the system knows about sets of rules expressed in the Jena rule 
language and it is asked by the Jena software to perform validation and inferences on the Model. 
Doing so may trigger actions specified by the rules.  

The data that the Jena persistence engine has available to it for its reasoning and to 
maintain the integrity of its resources over time is illustrated in Fig. 4, which may be thought of 
as the engine's view of those resources.  The Knowledge Base comprises domain specific 
ontology and rules, together with the backend database that Jena manages. We next discuss how 
the system maintains this integrity, computes inferred facts, and signals actions required by the 
rules.

Validation

Validation is an important part of 
maintaining the integrity of the KB.  Validation 
insures that the KB “conforms” to the ontology. 
The main job of validation is to check for 
inconsistencies with constraints set in the 
ontology.  If the reasoner does find any 
violations of constraints it reports these 
problems back to the system to take appropriate 
action.  Because our wireless sensor networks 
must be scalable to very large deployments, our 
software only considers a few basic mechanisms 
for determining when validation and inference 
should occur.  The first is to trigger an inference 
evaluation after a certain number of observations 

or observations of particular type have passed through the system.  The second is a configurable 
time interval which upon expiration, will trigger the evaluation. A third is a batch loading from 
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archival sensor data. An example of validation is checking that a particular type of sensor, such as 
a temperature sensor, is taking measurements of only one physical property.  The reasoner has the 
ability to enforce this because that constraint is expressed in the ontology. 

Inferences

Inference is the mechanism in our system by which domain knowledge rules can be used 
to deduce domain specific knowledge or to generate an action.  For example, the following naïve 
rule called winter illustrates what a domain scientist may want to happen if some set of conditions 
on sensor data has been met. Winter can be expressed in Jena RL as

[winter: (?m type Average),

  (?m measurementOf Temperature),

  (?m value ?value),

  lessThan(?value, 0) → (season isWinter true) ]

  

This rule corresponds to the following statement, “If there exists an average temperature 
which is below zero then the season is winter.”  Obviously this rule is grossly simplified with 
respect to spatial and temporal variables, but it illustrates how we can express the creation of new 
knowledge.  The right hand side of the ‘→’ is known as the consequent and the expressions on the 
left are the antecedents.  The definition and evaluation of predicates in rules can also be 
expressed in Java, in an extension mechanism that Jena calls—somewhat misleadingly—a built-
in (Jena, 2008b).  Built-ins are used in our system to aid in providing actions and notifications in 
response to the antecedents, and hence the consequent, of a rule being true.  For example, if an 
ecologist wished to receive a notification every time the temperature of his pond drops below 0 
degrees, the system would have a rule such as

[notifyme: 

(?m type TemperatureMeasurement),

(?m value ?value), 

lessThan(?value, 0) → 

email(“scientist@domain.edu”, “water is freezing! check the pond!”) ]

Here, email is a simple built-in function that we added to the system. ‘greaterThan’ and 
‘lessThan’ are built-ins that come with the Jena reasoner.  

Study Case
Here we discuss a real unexpected event in a CESN instrument deployment, which was in 

fact the motivation for extending our data validation system to one that allows scientists to 
propose explanations for anomalous data.  We present in some detail parts of an ontology, a 
Knowledge Base, and a set of rules that we have developed to support machine reasoning about 
ecosystem events in coastal embayments. It can support a wide variety of semantic modeling and 
hypothesis building about such events.  We focus on the portions needed to address the kind of 
turbidity events that led to unusual chlorophyll readings in an instrument package deployed in a 
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Boston Harbor embayment named Savin Hill Cove.  These rules are easily encoded for the Jena 
reasoner, which we deploy in the architecture described above.  Albeit important for ecological 
and biological processes, ontological time modeling is quite complicated (See, e.g. the discussion 
of continuants in [Smith et al., 2005]). In the ontology described below, we ignore the fact that 
the properties of objects vary with time and we model an object as an instance of a class at a 
particular time.  Also, the ranges (i.e. possible values) of class properties are greatly simplified 
for this discussion.

The motivating incident is reflected in the two graphs of Fig. 5. The lower shows 
temporally correlated chlorophyll and turbidity measurements from our instruments. On the same 
time scale the upper graph shows depth data at the instrument location, extrapolated from 
temporal wave height data in Boston Harbor,  together with a simple model tracking the wave 
influence  at a distance 1/4 wavelength below the wave. (Outside the deep ocean, the influence of 
waves on the bottom takes place mainly at depths less than 1/4 of the wavelength. More 
precisely, that influence decreases exponentially below that depth  [Knauss, 2005]). From the 
figure, a human can easily see that the wave penetrates the bottom shortly before the chlorophyll 
and turbidity spike. In this section, we explore how our reasoning system can evaluate these data 
to signal the plausibility of several hypotheses to explain their correlations.

The implementation described in this 
paper is dedicated to events that take place in the 
near shore ocean or coastal estuaries.  Fig. 6 
shows our current ontology characterization of 
an OceanEvent, with the two subclasses about 
which the example below exhibits how 
reasoning proceeds to accept or reject that a 
particular OceanEvent instance may lie in one or 
both (or neither) of the subclasses AlgalBloom 
or BenthicResuspension. Whether or not an 
OceanEvent even occurred, and which, if either, 
type it might have been, is a question to be 
addressed by the data and rules, not the 
ontology. The question becomes: given 
semantically appropriate measurement values 
(Turbidity and Chlorophyll for an AlgalBloom 
or WaveLength and water Depth for a 
BenthicResuspension; See Fig. 7.), do those 
values support the possibility of an AlgalBloom 
(resp. a BenthicResuspension). In more detailed 
Appendices we offer some technical detail about 
how Jena helps us answer this question. Here we 
content ourselves with a less formal explanation.
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According to the ontology details in 
Appendix 1, sensors that generate 
TurbidityMeasurements and 
ChlorophyllMeasurements must be of type 
OpticalBackScatterSensor and Flourometer, 
respectively. Part of the ontology specifies that 
those types of sensor-and only those types-can 
generate the required type of measurement. Note 
also that measurement aggregations, such 
statistical parameters, are treated as though they 
are themselves measurements.  These 
measurements contribute to the data required by 
the algal bloom rule seen below.    

[algal bloom rule: (?turb rdf:type cesn:StandardDeviation),
                (?chlor rdf:type cesn:StandardDeviation),

    (?turb cesn:aggregationOf cesn:TurbidityMeasurement), 
    (?chlor cesn:aggregationOf cesn:ChlorophyllMeasurement),
    (?turb cesn:value ?turb_value), (?chloe cesn:value ?chlor_value),
    greaterThan(?chl_value, “2.0”^^xsd:float),
    greaterThan(?turb_value, “2.0”^^xsd:float) -> 

email(‘scientist@domain.edu’, ‘possible algal bloom’),
persist(‘AlgalBloom’, now(), ‘Savin Hill Cove’) ]

This rule is 
capturing the fact that 
we are looking for 
turbidity and 
chlorophyll 
measurements that are 
two times greater than 
the standard deviation. 
When all the predicates 

of the rule are fulfilled then an email notification is generated and also the new knowledge of a 
possible AlgalBloom event is recorded in a data store. This is knowledge that an AlgalBloom 
could have happened at a certain time. It is not the data, nor the rules and ontology supporting the 
conclusion.  However, Jena can be configured to log those also, during the invocation of its 
reasoning engine. 

There are two measurement types that we use to model the re-suspension event; 
WavelengthMeasurement and DepthMeasurement.  Both of these measurements are calculated 
from sensor data that comes from outside of the CESN network.

In the informal (and oceanographically simplified) statement below, we model the 
antecedents of a possible re-suspension event by asking whether a candidate wave has been 
signaled within the last 10 minutes at a location where the current water depth is less than 1/4 the 
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wavelength.  As for the algal bloom event, when all requirements are fulfilled for the rule, then a 
notification email is posted and the possible event is recorded. Informally, the re-suspension rule 
is

if 

   (wave was within last 10 minutes) and

   ( depth < wavelength/4 >) 

then a re-suspension event was possible.

The expression of this in the Jena Rule Language requires considerably more complexity 
than this (see Appendix 2), particularly to set up the arguments to the arithmetic and time 
comparison predicates that we had to add, requiring a total of 17 antecedents to reach the 
conclusion and trigger a notice that conditions were supportive of a re-suspension event. In turn, 
were we operating the system to be triggered by a turbidity spike, an investigator could put forth 
hypotheses of both a benthic sediment re-suspension event and an algal bloom, either or both of 
which might be supported by the evidence as determined by the respective rules. 

Lessons Learned
The CESN ontology was built for this project and has not been carefully examined for its 

generality. We are unlikely to pursue this, since a better path is to adopt the MMI Device 
Ontology or the W3C Semantic Sensor Network Incubation Group ontology as each emerges. 
Reflecting on the CESN ontology for this paper, we encountered modeling decisions familiar to 
more experienced knowledge modelers, and which we would not repeat (and probably would find 
impossible with the emerging standard ontologies).  The most common of these is an excess of 
classes, some of which are too specific. For example, each instrument in our deployment is an 
instance of a class identifying the manufacturer and model, an unscalable model that could just as 
well have been satisfied by assigning those details to properties of more generic classes.  In 
addition, the most straightforward mapping of relational data to OWL instance documents is to 
model tables as classes (Allemang and Hendler, 2008), and it is even clearer that one table per 
manufacturer/model is an unlikely organization for most scientific use cases. 

A second issue deserves mention. That is, our modeling conflates the observation data, 
i.e. the measurements of the sensors during the events we reasoned about, with the properties of 
the sensors themselves. A separation of these two knowledge domains would be reasonable: there 
can be physical measurements in which the measurement instruments are irrelevant or unknown, 
and there can be instruments, knowledge of whose properties is useful independent of any data 
taken by them. Separating these is not likely to have much impact on our approach short of 
adding a second namespace, and the efforts of MMI and W3C intend to keep these domains 
separate. 

Our ontology classifies different physical properties that sensors might measure, and 
specifies that a sensor can only measure one kind of physical property. However, it does not 
currently model physical properties as distinct. The OWL language includes relatively simple 
mechanisms to place such distinctiveness restrictions on concepts, but in this case we do not 
make use of them. Arguably, doing so is a more realistic model and could lead to more robust 
data. For example, nothing presently prohibits an object of type TemperatureMeasurement from 
also being an object of type HumidityMeasurement, although OWL is capable of that 
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expressivity. This could impede semantic data integration, where it may be important to 
distinguish not only when classes can overlap, but when they cannot. 

Future Work 
Often the data available from the local network is insufficient to make certain complex 

inferences because sensor networks tend to be very specific in what physical properties they are 
measuring.  In order to fulfill the data requirements of certain rules, a sensor network might need 
to get information outside of its spatial, temporal and knowledge domains.  In recent years there 
have been several ongoing efforts to develop and standardize interoperable data interfaces to 
sensor networks (Tilak et al., 2007; Sensor Observation Service, 2007; Sensor Planning Service, 
2007).  Coupled with the rising popularity of web services and service oriented architecture in the 
scientific community, this gives the potential for sensor data systems to validate and make 
inferences beyond the scope of their own knowledge base.

We intend to examine the performance scalability of operating the architecture in a real 
time environment. Several questions come to mind for such an effort: (a) what is the impact of 
our current over-coupling of the general and specific parts of the CESN ontology; (b) can rule 
sets be automatically decomposed or reordered in such a way as to cause validation failure to 
happen very quickly, e.g. because certain antecedents are the most likely to be the cause of 
rejection of the consequent.

Energy conservation is a central concern for the remote nodes of a sensor network, so 
operations not relating directly to a physical measurement should be put off elsewhere.  All but 
simple inference, such as programming “if-then-else” statements, is computationally expensive.  

The most intuitive placement for sensor data inference is at or directly in front of a 
natural aggregation point in the sensor network, where higher computational power is required 
anyway.  For many sensor networks these aggregation points are known as gateways.  In general, 
a gateway for a sensor network is usually a larger device with more computing power, storage, 
and bandwidth than what is available to the sensor or instrument nodes.  The gateway makes an 
appropriate host for our system because the computational requirements our software take no 
consideration of the resource sensitivity of sensor nodes.

There are instances where we would like to expand the geographic scope of reasoning.  
Suppose that in Savin Hill Cove we were able to accept either of our two hypotheses, an algal 
bloom or re-suspension.  These events at the moment are local to a particular part of Boston 
Harbor. To offer strength, or to generate further hypotheses, we would like to see if our 
inferences hold after performing the same reasoning, or parts thereof, across similar sensor 
networks available in Boston Harbor.  We hope to incorporate such distributed reasoning in the 
future.

Another interesting possibility is to allow rules to influence how the sensor network 
behaves based on the discovery of an event.  A use case for this might be that on detection of an 
algal bloom in one geographic location in the network, it may be important to increase sampling 
frequency in areas surrounding the existing location.  This allows the network to determine when 
it is appropriate the expend more energy for better measurements of interesting events and also it 
leads to the possibility of being able to track a moving event across a region.

Lastly, well-designed user interface is needed to enable domain scientists to express their 
knowledge.  First order logic expressions in Jena RL are too cumbersome for users.  A friendly 
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user interface could provide a high level graphical tool for scientists to construct rules.

Summary
We have developed an ontology and a Knowledge Base for sensor networks which 

observe coastal ecosystems. It includes mechanisms that can validate sensor observations, 
provide ways for scientists or decision makers to test hypotheses about anomalous sensor network 
observations and examine the impact on their models of accepting those observations as valid. 
The machine reasoning parts of this system are in place and tested with rules for validating data 
supplied by heterogeneous instrument packages according to rules relating expected correlations 
between the individual sensors and rules describing necessary conditions for the occurrence of 
specific ecological events.  

Acknowledgements. This work was supported in part by U.S. Department of Energy Our 
thanks also to Bernie Gardner for explanation of the models of wave influence on bottom 
sediments.  We appreciate a number of suggestions made by the reviewers.

Appendix 1. Jena, RDF, and OWL 
This section sketches Jena and its use in somewhat more detail than above. For further 

details, consult Jena (2009b, 2009c). 

RDF and its related languages RDFS (2009) and OWL describe resources by identifying 
them with Universal Resource Identifiers (“URIs”) and relations between them. Formally, RDF 
has two equivalent definitions. First, it is a set of triples <subject, predicate, object>, where the 
subject and object are URIs that identify some resources that are being described, and the 
predicate identifies a relation between them. Triples themselves can be declared to be resources, 
allowing relationships among triples to be described. This process is called reification, loosely 
following terminology from the linguistics discipline. To the extent we should think about a triple 
as part of a description of its subject, reification allows the formation of descriptions of 
descriptions.  In turn, this allows descriptions not only of resources, but also of abstractions about 
them, i.e. classes of resources and properties of resources expressed without regard to any 
particular explicit resources. That is the role of RDFS and OWL. 

A set of triples naturally gives rise to a directed labeled graph, whose nodes are resources 
occurring in the triple set, and directed edges from subject to object labeled with the predicate 
URI. Conversely given such a graph, we can produce a set of triples whose subject is the (URI of 
the) edge source, predicate is the edge label, and object is the (URI of the) target of the edge. 
Such a graph provides an equivalent definition of RDF.  We have oversimplified these definitions 
especially in that RDF includes a rudimentary type system, which is especially important with the 
introduction of RDFS, which is an RDF vocabulary that adds classes to the basic notions of RDF. 
Thus, a triple <A, rdf:type, B>  where B is a class defined in RDFS can be interpreted as saying 
that A is a member of B.

Sometimes one of these two expressions of RDF provides the modeler with a better view 
than the other. This makes the W3C RDF Validator (W3C, 2009b) a particularly helpful tool for 
exploring RDF knowledge models, because it can display both forms.

Finally, RDF has several serializations, including one in XML, called RDF/XML. This is 
convenient mainly due to widespread familiarity with XML and availability of many tools to 
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manipulate it. Unlike the graph or triple representations, it often fails to provide human readers 
with insights into subtle issues in a model. 

The Jena framework provides a Java API for the manipulation of, and reasoning about, 
RDF graphs.  It supports the representation of these in memory using java objects, on files using 
various serialization forms, and in relational databases.  It does this based on a unified Java 
interface called a Model and provides factory methods for constructing various kinds of Model 
sub-interfaces and implementations.  One Model implementation is a Jena class named 
ModelRDB, which provides, via JDBC, an RDF triple store represented in a relational database, 
in our case MySQL.  Jena can read an ontology and create the database as a single table with 
attributes a subject, predicate and object, each represented by a URI.  (A fourth attribute provides 
a local identifier for the graph, which we ignore here).  In our application, cesn.owl, the main 
ontology, models only the sensor and measurement abstractions, which are suitable for persistent 
storage, to be reloaded by Jena at the time the reasoning is done.  By contrast, a small 
oceanevents.owl, which models events such as resuspensions, is loaded when reasoning is to be 
done, along with rules and data.  Indeed, our current implementation is a web service which can 
take these runtime resources as arguments.  Jena's treatment of the rules is somewhat different 
from its treatment of ontologies, a point we take up in Appendix 2. Here we remark that the Fig. 8 
below indicates a model in which cesn.owl was decomposed into a general upper ontology and a 
more specific lower ontology modeling particular types of sensors. In fact, for our prototype, both 
the general and specific, as well as some instance representations (i.e. assertions about specific 
sensors and deployments) in a single ontology, cesn.owl.  This is not a scalable model as we 
described earlier.  We have since refactored the ontology to essentially what Fig. 8 represents 
(with the additional sensor types) and have begun to develop a corresponding refactorization of 
the Java application in order to generalize it.
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CESN upper and lower ontology.  In Fig. 8, the upper portion of the diagram depicts the 
structure of an abstract Sensor class and that of a PhysicalPropertyMeasurement, which is what a 
Sensor can measure. Undepicted are representations of Deployment, Instrument, and Platform 
which describe how sensors are managed. Those are unused in the reasoning discussed in this 
paper.  The lower part of the diagram models particular kinds of sensors as subclasses of Sensor. 
They have restrictions on what they can measure, and that is restricted to a single thing, which is 
an instance of PhysicalProperty.  Instances of PhysicalProperty represent actual data, the central 
feature of which is a floating-point number identified by the value RDF property of the 
PhysicalProperty. In the upper diagram, are five subclasses of PhysicalProperty which are in fact 
part of the lower ontology, but repeated in the upper diagram for display convenience.  Likewise, 

PhysicalProperty appears in the lower ontology for a similar reason.  Consequently, without 
merging the repetitions, the illustration does not precisely represent an RDF triple graph.  Square 
boxes are instances, in these cases of class PhysicalProperty.
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Figure 8. Partial CESN Ontology



The actual ontology presently has several other Sensor types, which measure, e.g. 
dissolved oxygen, temperature, and other physical properties.   

Below we illustrate a portion of the MySQL table produced by Jena 

The first four of these are the easiest to understand:. The first two together say that 
ChlorophyllMeasurement is a Class which is a subClass of PhysicalPropertyMeasurement. The 
second two similarly describe Fluorometer as a subclass of Sensor. The remainder of this set of 
records is devoted to expression of some of the semantics of ChlorophyllMeasurement, namely 
that a Flourometer can measure it and only it (i.e. if a Flourometer hasTaken a measurement, then 
that measurement is necessarily a ChlorophyllMeasurement. The use of the OWL “restriction” 
mechanism to accomplish this is somewhat arcane, including the assignment of URIs to 
anonymous classes (here 7fbf and 7fbe). The reader unacquainted with it may consult Allemand 
and Hendler (p. 179ff).  Finally, we remark that following common practice, in the interests of 
readability we have severely abbreviated the URIs that Jena inserts. The above triples in the 
relational database correspond to this portion of the RDF/XML expression of the owl ontology:

<owl:Class rdf:about="#ChlorophyllMeasurement">
   <rdfs:subClassOf rdf:resource="#PhysicalPropertyMeasurement"/>
</owl:Class>

   <owl:Class rdf:about="#Flourometer">
        <rdfs:subClassOf rdf:resource="#Sensor"/>
        <rdfs:subClassOf>
            <owl:Restriction>
                <owl:onProperty rdf:resource="#hasTaken"/>
                <owl:allValuesFrom      
       rdf:resource="#ChlorophyllMeasurement"/>
            </owl:Restriction>
        </rdfs:subClassOf>
        <rdfs:subClassOf>
            <owl:Restriction>
                <owl:onProperty rdf:resource="#canMeasure"/>
                <owl:hasValue rdf:resource="#Chlorophyll"/>
            </owl:Restriction>
        </rdfs:subClassOf>
    </owl:Class>
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Portion of MySQL Triple Store Produced by Jena from cesn.owl
Subject Predicate Object

cesn:ChlorophyllMeasurement: rdf:type: owl:Class:
cesn:ChlorophyllMeasurement: rdfs:subClassOf: cesn:PhysicalPropertyMeasurement
cesn:Flourometer: rdf:type: owl:Class:
cesn:Flourometer: rdfs:subClassOf: cesn:Sensor:
7fbf rdf:type: owl:Restriction:
cesn:Flourometer: rdfs:subClassOf: 7fbf
7fbf owl:allValuesFrom: cesn:ChlorophyllMeasurement:
7fbf owl:onProperty: cesn:hasTaken:
7fbe rdf:type: owl:Restriction:
cesn:Flourometer: rdfs:subClassOf: 7fbe
cesn:Chlorophyll: rdf:type: cesn:PhysicalProperty:



Appendix 2. Rules
[resuspensionrule: 

  (?wavelength rdf:type 
http://www.cs.umb.edu/~mcalder/sensor/cesn.owl#WavelengthMeasurement),
  (?depth rdf:type 
http://www.cs.umb.edu/~mcalder/sensor/cesn.owl#DepthMeasurement),

    
  (?wavelength http://www.cs.umb.edu/~mcalder/sensor/cesn.owl#timestamp 
?wave_time),
  (?depth http://www.cs.umb.edu/~mcalder/sensor/cesn.owl#timestamp ?
depth_time),
  dateToLong(?wave_time, ?wave_time_long),
  dateToLong(?depth_time, ?depth_time_long),
  now(?now), 
  dateToLong(?now, ?now_long),
  difference(?now_long, 
"600000"^^http://www.w3.org/2001/XMLSchema#long, ?ten_minutes_ago),
  greaterThan(?wave_time_long, ?ten_minutes_ago), 
  greaterThan(?depth_time_long, ?ten_minutes_ago), 
  lessThan(?wave_time_long, ?now_long), 
  lessThan(?depth_time_long, ?now_long),                   
  (?wavelength http://www.cs.umb.edu/~mcalder/sensor/cesn.owl#value ?
wave_value),
  (?depth http://www.cs.umb.edu/~mcalder/sensor/cesn.owl#value ?
depth_value),
  quotient(?wave_value, 
"4"^^http://www.w3.org/2001/XMLSchema#integer, ?wave_pen),
  lessThan(?wave_pen, ?depth_value) -> 
    print('resuspension rule matched'),    
    email('scientist@domain.edu', 'possible resuspension event'), 
    persist('ResuspensionEvent', now(), 'Savin Hill Cove')]

Informally, this might be expressed as

let 
  ?wavelength be a WavelengthMeasurement  and
  ?depth be a DepthMeasurement  and
  ?wavelength have timestamp wave_time  and
  ?depth have timestamp depth_time  and
  ?wave_time_long = dateToLong(?wave_time) and
  ?depth_time_long = dateToLong(?depth_time) and
  ?now be the current time and
  ?now_long = dateToLong(?now) and
  ?ten_minutes_ago = ?now_long - 600000  and

    #wave within last ten minutes
  ?ten_minutes_ago > wave_time_long    and
  ?ten_minutes_ago > depth_time_long   and
  ?wave_time_long < now_long and
  ?depth_time_long < now_long and
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    #set values from data
  ?wavelength value be  ?wave_value and
  ?depth   value be depth_value   and
  ?wave_pen  be ?wave_value/4  and
  ?depth_value < wave_pen then
   
    #the consequents hold, which here means are executed
    print('resuspension rule matched'),    
    email('scientist@domain.edu', 'possible resuspension event'), 
    persist('ResuspensionEvent', now(), 'Savin Hill Cove')]

Jena has two subinterfaces of the Model java interface mentioned in Appendix 1. The 
first, OntModel, is useful for java representations of RDF ontologies.  Jena's ModelRDB class 
implements OntModel.  This class has methods to produce and access a triple store in relational 
database.  We use it at system initialization to store cesn.owl and oceanevents.owl in the 
persistent triple store represented in the MySQL database.  When the reasoning system is 
invoked, observation data is acquired and added to the persistent triple store. Both the actual 
measurement value and it's type (e.g. ChlorophyllMeasurement) will be represented in the triple 
store. CESN reasoning consists of instantiating a second Jena interface, called InfModel 
(“Inference Model”) which has access to both the RDF graph now representing both data and 
ontologies, as well as to the Jena rules chosen at run time, e.g. the resuspension rule illustrated 
above. Invoking the InfModel's validate() causes Jena to determine the logical consistency of the 
aggregate RDF graph comprising the ontology triples, the data triples, and the triples inferred by 
applying the rules. In the resuspension rule case, validity will result in notification that the event 
is consistent with resuspension. In our demonstration software, the observation data is loaded all 
at once from legacy data before the reasoning is invoked. However, it is simple to write a 
reasoning invocation loop that adds data in real time from an operating sensor network and tests 
the rule on each data acquisition.  Indeed, we have also implemented a web service that can 
accept new data and invoke the validation in response to that arrival. Performance considerations 
that we have not yet explored almost certainly would mitigate against repeated access to the 
persistent triple store in that case, particularly for problems where a large amount of observation 
data is accumulating rapidly.
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Fig. 9 shows a simplified UML sequence diagram that shows the internal architecture of 
the Jena-based components of the system. It omits any indication of whether observation data 
should remain only in memory, or remain serialized in the MySQL triple store.  That is purely a 
configuration question, and depends only on whether a use case has need of re-use of the 
observations.
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