
Machine reasoning about anomalous sensor data

Matt Calder, Robert A. Morris, Francesco Peri

University of Massachusetts Boston

To appear Ecological Informatics with doi:10.1016/j.ecoinf.2009.08.007 or see also
http://dx.doi.org.ezproxy.lib.umb.edu/10.1016/j.ecoinf.2009.08.007
Figures in this preprint best viewed at 200%, or printed. This preprint differs from the publication
principally in layout.

Abstract. We describe a semantic data validation tool that is capable of observing
incoming real-time sensor data and performing reasoning against a set of rules specific to
the scientific domain to which the data belongs. Our software solution can produce a
variety of different outcomes when a data anomaly or unexpected event is detected,
ranging from simple flagging of data points, to data augmentation, to validation of
proposed hypotheses that could explain the phenomenon. Hosted on the Jena Semantic
Web Framework, the tool is completely domain-agnostic and is made domain-aware by
reference to an ontology and Knowledge Base (KB) that together describe the key
resources of the system being observed. The KB comprises ontologies for the sensor
packages and for the domain; historical data from the network; concepts designed to
guide discovery of internet resources unavailable in the local KB but relevant to
reasoning about the anomaly; and a set of rules that represent domain expert knowledge
of constraints on data from different kinds of instruments as well as rules that relate types
of ecosystem events to properties of the ecosystem. We describe an instance of such a
system that includes a sensor ontology, some rules describing coastal storm events and
their consequences, and how we relate local data to external resources. We describe in
some detail how a specific actual event---an unusually high chlorophyll reading---can be
deduced by machine reasoning to be consistent with being caused by benthic diatom re-
suspension, consistent with being caused by an algal bloom, or both.

Key Words

Ecology, Measurement, Ontology, Sensor. Rules, OWL.

Introduction
Deciding whether a sensor reading is unexpected, and if so whether it represents a system

failure or, instead, an event of unusual interest requires testing against not only design parameters
of the instrument, but also testing against models of the expected behavior of the system under
measurement. There is a long history of addressing this question in industrial control and safety-
critical systems (Del Gobbo et al., 1998). Recently, with the rapidly decreasing cost of wireless
sensor networks for ecological study, the issue has attracted the attention of computer scientists

1

http://dx.doi.org.ezproxy.lib.umb.edu/10.1016/j.ecoinf.2009.08.007

(Peng, 2009). The high rates at which wireless sensor networks can deliver data and the great
volume of data the scientific community will therefore be faced with, suggest a need for a
software solution to the problem of distinguishing sensor failures from interesting observations.
Our work demonstrates that reasoning based on formal ontologies can assist in that task. The
approach allows scientists to put forth formal models for physical properties being measured, and
decide whether one or another explanation is logically consistent with the model and the
measurements.

Our software relies on several components that work together to form a domain-agnostic
data reasoning system. Its current configuration comprises a system for reasoning about coastal
storm events, and data about them gathered by a wireless sensor network.

Our original implementation treated only the simple case of validating hypotheses of
potential sensor failure. A simple example of sensor failure might be the return of values known
to be out of the range of possible values specified by the sensor manufacturer. For example, let
us assume that a certain model of temperature sensor has the physical limitation of never being
able to take a measurement lower than -30 °C. In widely used rule notation with variables denoted
with '?', we can express this formally as

[model37 range check:

(?s type Model37_TemperatureSensor),

(?s hasTakenMeasurement ?m),

(?m value ?v),

lessThan(?v, -30) →

(?s hasOutOfRangeViolation ?m)]

The above rule expresses to the reasoning system “If s is a Model37 Temperature sensor
and s has taken measurement m and m has value v and v is less than minus 30, then s might be out
of range for reporting m.” Use of the word might here is not incidental. Reasoning systems such
as we describe are essentially constrained to examining their internal consistency, the consistency
of their data with their models, and—of central interest to this work—the consistency of
additional hypotheses about those models and data. Thus, they form a useful framework for
evidence-based examination of hypotheses and models.

Modeling of sensor data with ontology has been approached before (Eid et al., 2006) but
that work does not provide any framework for considering sensors as signalers of events. To
describe events, the sensor data requires a range of values upon which arithmetic computations
can be performed. However, because the now standard Web Ontology Language (OWL, 2004),
is unable to express any constraints on numeric bounds of a data type field, a reasoner validating
only against the ontology would fail to detect any inconsistency. This paper describes how we
have added ontology-based rules to allow scientists to offer science-driven hypotheses about the
cause of anomalous sensor network reports. To model hardware in use at the University of
Massachusetts-Boston Center for the Study of Coastal Environmental Sensor Networks (CESN),
the CESN ontology (CESN Sensor Ontology, 2008) provides concepts about sensors and their

2

deployments as seen by middleware responsible for database persistence. For this work, we have
extended it to contain concepts about events that may occur during storms. The ontology is
unconcerned with the sensor network logical or physical topology, or issues of intermediate
aggregation within the sensor network. A second component is a local Knowledge Base of facts
describing particular CESN instrument deployments as instances of classes defined in the
ontology. A third, more novel, component is a collection of rule sets which represent the domain
specific knowledge and hypotheses of scientists, in our case, oceanographers. Rules can be added
to the software system dynamically and the Jena (Jena, 2009a) reasoner will signal whether they
contradict the current state of knowledge in the system (i.e. the rules and facts). The final
component is a KB supporting discovery and acquisition of data from resources other than our
own, such as NOAA weather stations, guided by concepts from the ontology. For example, our
simple ocean event ontology discussed later requires wind and wave data (or at least the value of
attributes of the wind and waves at the time of the event), but our instruments provide no such
information. (In the present implementation, we import this data statically, but the software is
agnostic about its source, and future work will launch semantically based web searches to
discover it.)

Our sensor systems push their collected data to the internet using a web service interface.
Behind the web service our reasoning platform validates and applies domain knowledge rules on
incoming data. Rules, with associated actions, applicable to the incoming data are supplied to the
reasoner, which decides whether any conditions of the rules are met or fail to be met and trigger
the associated action. Actions can include such things as tagging the data (e.g., as anomalous),
putting it in a separate data store, or generating a notification to other software or to a human.

Background on Knowledge Representation
An ontology can be described as a representation of concepts within a certain domain of

knowledge and the relationship between those concepts (Antoniuo and Harmelen, 2004). The
notions that the OWL language uses to express an ontology are shared by most ontology
languages. These include: classes, instances and properties (sometimes called attributes or
predicates). Classes represent the concepts of a knowledge domain. Hierarchies among classes
are represented by subclass relationships. Properties are used to establish relationships between
concepts or between concepts and primitive data types such as numeric data. Individuals are
instances of classes (Fig. 1). It might have been tempting to implement reasoning about sensor
data purely with the use of an Object Oriented Programming (OOP) language such as Java.
However, not only are there a number of reasoning engines available for OWL, but also, unlike in
OOP, a class in OWL need not be defined by the sum of its properties. This makes ontology-
based models particularly suitable for eco-informatics, because ecosystems—indeed most natural
systems—exhibit many individual exceptions to the applicability of attributes that may form
important parts of models.

A semantic reasoner is a software program capable of
making or validating inferences based on sets of rules and facts
expressed using the concepts of an ontology and the
mathematical formalism known as first order logic. This has
simple mechanisms for deducing whether statements are true or
false, starting with a set of axioms and rules. This, too,
corresponds closely to the way most scientific inquiry proceeds.
The inquiry starts with a set of hypothetical facts---whose

3

Fig. 1: Class and instance

acceptance is bolstered by observation---and a set of rules for reasoning about those facts. The
latter are really a kind of model, sometimes formally so. Within first order logic, a rule takes the
general form of Ρ 1, …, Ρ n → Q where the Pi, and Q are predicates (i.e. statements that are either
true or false), and the arrow denotes logical implication. For example, a coastal ecosystem model
might have a rule which says in plain language: “If water level is low and winds are high,
sediment suspension will happen.” This can be represented logically as low(waterlevel),
high(winds) → occurred(sediment suspension). Given a set of facts and rules, a reasoner can find
logical paths for new facts, validate those attributed to new observations, or even propose which
existing rules and facts are inconsistent with the new observations. For use in machine reasoning
or semantic modeling, there are special rule languages. Among the widely used ones are RuleML
(2006), SWRL (Horrocks, 2004) and one that is utilized in our software from the Jena framework
for semantic processing, Jena RL (Jena, 2007a).

CESN: An Ontology of Sensors and their Measurements

The purpose of the CESN sensor ontology is to describe the relationships between
sensors and their measurements. The main concepts found in the CESN sensor ontology are
similar to the terminology described in SensorML (2007) and to some of those emerging in the
Marine Metadata Interoperability device ontology project (MMI, 2009), and CSIRO Sensor
Ontology (CSIRO, 2009). These and several others are under scrutiny by the W3C Semantic
Sensor Incubation Group (W3C, 2009a) with the active participation of their developers, and the
entire subject of semantically enabled sensors is in its infancy (CEUR-WS, 2009; Sheth and
Hanson, 2008).

As shown in Fig. 2, the core concepts in the CESN sensor ontology are the physical
sensor devices themselves, Sensor; the PhysicalProperty that a Sensor can measure; and the
measurement that a sensor has taken, PhysicalPropertyMeasurement. Not shown are important
constraints, expressed in OWL, on this core. For example, a Sensor object can measure only one
physical property. Objects that can contain Sensors and so measure more than one physical
property are modeled by a class named Instrument. In turn, an instrument is usually deployed on
some kind of Platform, which typically constrains its relationship to the environment in which it
is deployed. Also not shown is the class Deployment, which represents the deployment of an
instrument at a particular time and place, and so can be used to relate instrument readings to
expected or unexpected events putatively signaled by the data modeled by the structure sketched
in Fig. 2. A more detailed depiction of the core ontology is shown in Fig. 7.

Deployment attributes of individual instruments is
particularly important in the real world of movable
instruments. For example, it might be critical to know in
advance of deployment whether an instrument package can
be deployed underwater and to what depth. However, in
this work we have no discussion of the Instrument,
Platform, or Deployment because our focus, and the
present software and rules, are agnostic about the origin of
the data. As we shall see shortly, the rules in this case have
no terms involving those classes. (Strictly speaking, this
alone does not guarantee logical independence from those

4

Fig. 2: Sensor class.

classes, but an explication would require detailed discussion of inferred vs. stated relationships,
which is beyond the scope of this paper, other than for our motivating example.)

Semantic Data Validation and Inferences

Fig. 3 depicts the principal components
of the CESN reasoner and the data flow between
them. Gateway hosts G receive data from
instruments I via radios R or other
communications channels. These forward data to
a Reasoning Invocation Host, G*, which invokes
our system via a web interface. Incoming sensor
data, data requested by the system from other
web services, and inferred data produced by the
Semantic Reasoner are persisted as facts in a
MySQL database through Jena’s Model

interface. The Model is a convenient programming abstraction for easily managing instances.
The reasoner component of the system knows about sets of rules expressed in the Jena rule
language and it is asked by the Jena software to perform validation and inferences on the Model.
Doing so may trigger actions specified by the rules.

The data that the Jena persistence engine has available to it for its reasoning and to
maintain the integrity of its resources over time is illustrated in Fig. 4, which may be thought of
as the engine's view of those resources. The Knowledge Base comprises domain specific
ontology and rules, together with the backend database that Jena manages. We next discuss how
the system maintains this integrity, computes inferred facts, and signals actions required by the
rules.

Validation

Validation is an important part of
maintaining the integrity of the KB. Validation
insures that the KB “conforms” to the ontology.
The main job of validation is to check for
inconsistencies with constraints set in the
ontology. If the reasoner does find any
violations of constraints it reports these
problems back to the system to take appropriate
action. Because our wireless sensor networks
must be scalable to very large deployments, our
software only considers a few basic mechanisms
for determining when validation and inference
should occur. The first is to trigger an inference
evaluation after a certain number of observations

or observations of particular type have passed through the system. The second is a configurable
time interval which upon expiration, will trigger the evaluation. A third is a batch loading from

5

Fig. 3

Fig. 4

archival sensor data. An example of validation is checking that a particular type of sensor, such as
a temperature sensor, is taking measurements of only one physical property. The reasoner has the
ability to enforce this because that constraint is expressed in the ontology.

Inferences

Inference is the mechanism in our system by which domain knowledge rules can be used
to deduce domain specific knowledge or to generate an action. For example, the following naïve
rule called winter illustrates what a domain scientist may want to happen if some set of conditions
on sensor data has been met. Winter can be expressed in Jena RL as

[winter: (?m type Average),

 (?m measurementOf Temperature),

 (?m value ?value),

 lessThan(?value, 0) → (season isWinter true)]

This rule corresponds to the following statement, “If there exists an average temperature
which is below zero then the season is winter.” Obviously this rule is grossly simplified with
respect to spatial and temporal variables, but it illustrates how we can express the creation of new
knowledge. The right hand side of the ‘→’ is known as the consequent and the expressions on the
left are the antecedents. The definition and evaluation of predicates in rules can also be
expressed in Java, in an extension mechanism that Jena calls—somewhat misleadingly—a built-
in (Jena, 2008b). Built-ins are used in our system to aid in providing actions and notifications in
response to the antecedents, and hence the consequent, of a rule being true. For example, if an
ecologist wished to receive a notification every time the temperature of his pond drops below 0
degrees, the system would have a rule such as

[notifyme:

(?m type TemperatureMeasurement),

(?m value ?value),

lessThan(?value, 0) →

email(“scientist@domain.edu”, “water is freezing! check the pond!”)]

Here, email is a simple built-in function that we added to the system. ‘greaterThan’ and
‘lessThan’ are built-ins that come with the Jena reasoner.

Study Case
Here we discuss a real unexpected event in a CESN instrument deployment, which was in

fact the motivation for extending our data validation system to one that allows scientists to
propose explanations for anomalous data. We present in some detail parts of an ontology, a
Knowledge Base, and a set of rules that we have developed to support machine reasoning about
ecosystem events in coastal embayments. It can support a wide variety of semantic modeling and
hypothesis building about such events. We focus on the portions needed to address the kind of
turbidity events that led to unusual chlorophyll readings in an instrument package deployed in a

6

Boston Harbor embayment named Savin Hill Cove. These rules are easily encoded for the Jena
reasoner, which we deploy in the architecture described above. Albeit important for ecological
and biological processes, ontological time modeling is quite complicated (See, e.g. the discussion
of continuants in [Smith et al., 2005]). In the ontology described below, we ignore the fact that
the properties of objects vary with time and we model an object as an instance of a class at a
particular time. Also, the ranges (i.e. possible values) of class properties are greatly simplified
for this discussion.

The motivating incident is reflected in the two graphs of Fig. 5. The lower shows
temporally correlated chlorophyll and turbidity measurements from our instruments. On the same
time scale the upper graph shows depth data at the instrument location, extrapolated from
temporal wave height data in Boston Harbor, together with a simple model tracking the wave
influence at a distance 1/4 wavelength below the wave. (Outside the deep ocean, the influence of
waves on the bottom takes place mainly at depths less than 1/4 of the wavelength. More
precisely, that influence decreases exponentially below that depth [Knauss, 2005]). From the
figure, a human can easily see that the wave penetrates the bottom shortly before the chlorophyll
and turbidity spike. In this section, we explore how our reasoning system can evaluate these data
to signal the plausibility of several hypotheses to explain their correlations.

The implementation described in this
paper is dedicated to events that take place in the
near shore ocean or coastal estuaries. Fig. 6
shows our current ontology characterization of
an OceanEvent, with the two subclasses about
which the example below exhibits how
reasoning proceeds to accept or reject that a
particular OceanEvent instance may lie in one or
both (or neither) of the subclasses AlgalBloom
or BenthicResuspension. Whether or not an
OceanEvent even occurred, and which, if either,
type it might have been, is a question to be
addressed by the data and rules, not the
ontology. The question becomes: given
semantically appropriate measurement values
(Turbidity and Chlorophyll for an AlgalBloom
or WaveLength and water Depth for a
BenthicResuspension; See Fig. 7.), do those
values support the possibility of an AlgalBloom
(resp. a BenthicResuspension). In more detailed
Appendices we offer some technical detail about
how Jena helps us answer this question. Here we
content ourselves with a less formal explanation.

7

Fig 5.

According to the ontology details in
Appendix 1, sensors that generate
TurbidityMeasurements and
ChlorophyllMeasurements must be of type
OpticalBackScatterSensor and Flourometer,
respectively. Part of the ontology specifies that
those types of sensor-and only those types-can
generate the required type of measurement. Note
also that measurement aggregations, such
statistical parameters, are treated as though they
are themselves measurements. These
measurements contribute to the data required by
the algal bloom rule seen below.

[algal bloom rule: (?turb rdf:type cesn:StandardDeviation),
 (?chlor rdf:type cesn:StandardDeviation),

 (?turb cesn:aggregationOf cesn:TurbidityMeasurement),
 (?chlor cesn:aggregationOf cesn:ChlorophyllMeasurement),
 (?turb cesn:value ?turb_value), (?chloe cesn:value ?chlor_value),
 greaterThan(?chl_value, “2.0”^^xsd:float),
 greaterThan(?turb_value, “2.0”^^xsd:float) ->

email(‘scientist@domain.edu’, ‘possible algal bloom’),
persist(‘AlgalBloom’, now(), ‘Savin Hill Cove’)]

This rule is
capturing the fact that
we are looking for
turbidity and
chlorophyll
measurements that are
two times greater than
the standard deviation.
When all the predicates

of the rule are fulfilled then an email notification is generated and also the new knowledge of a
possible AlgalBloom event is recorded in a data store. This is knowledge that an AlgalBloom
could have happened at a certain time. It is not the data, nor the rules and ontology supporting the
conclusion. However, Jena can be configured to log those also, during the invocation of its
reasoning engine.

There are two measurement types that we use to model the re-suspension event;
WavelengthMeasurement and DepthMeasurement. Both of these measurements are calculated
from sensor data that comes from outside of the CESN network.

In the informal (and oceanographically simplified) statement below, we model the
antecedents of a possible re-suspension event by asking whether a candidate wave has been
signaled within the last 10 minutes at a location where the current water depth is less than 1/4 the

8

Fig 6: Ocean Event Structure

Fig. 7. Partial measurement ontology

wavelength. As for the algal bloom event, when all requirements are fulfilled for the rule, then a
notification email is posted and the possible event is recorded. Informally, the re-suspension rule
is

if

 (wave was within last 10 minutes) and

 (depth < wavelength/4 >)

then a re-suspension event was possible.

The expression of this in the Jena Rule Language requires considerably more complexity
than this (see Appendix 2), particularly to set up the arguments to the arithmetic and time
comparison predicates that we had to add, requiring a total of 17 antecedents to reach the
conclusion and trigger a notice that conditions were supportive of a re-suspension event. In turn,
were we operating the system to be triggered by a turbidity spike, an investigator could put forth
hypotheses of both a benthic sediment re-suspension event and an algal bloom, either or both of
which might be supported by the evidence as determined by the respective rules.

Lessons Learned
The CESN ontology was built for this project and has not been carefully examined for its

generality. We are unlikely to pursue this, since a better path is to adopt the MMI Device
Ontology or the W3C Semantic Sensor Network Incubation Group ontology as each emerges.
Reflecting on the CESN ontology for this paper, we encountered modeling decisions familiar to
more experienced knowledge modelers, and which we would not repeat (and probably would find
impossible with the emerging standard ontologies). The most common of these is an excess of
classes, some of which are too specific. For example, each instrument in our deployment is an
instance of a class identifying the manufacturer and model, an unscalable model that could just as
well have been satisfied by assigning those details to properties of more generic classes. In
addition, the most straightforward mapping of relational data to OWL instance documents is to
model tables as classes (Allemang and Hendler, 2008), and it is even clearer that one table per
manufacturer/model is an unlikely organization for most scientific use cases.

A second issue deserves mention. That is, our modeling conflates the observation data,
i.e. the measurements of the sensors during the events we reasoned about, with the properties of
the sensors themselves. A separation of these two knowledge domains would be reasonable: there
can be physical measurements in which the measurement instruments are irrelevant or unknown,
and there can be instruments, knowledge of whose properties is useful independent of any data
taken by them. Separating these is not likely to have much impact on our approach short of
adding a second namespace, and the efforts of MMI and W3C intend to keep these domains
separate.

Our ontology classifies different physical properties that sensors might measure, and
specifies that a sensor can only measure one kind of physical property. However, it does not
currently model physical properties as distinct. The OWL language includes relatively simple
mechanisms to place such distinctiveness restrictions on concepts, but in this case we do not
make use of them. Arguably, doing so is a more realistic model and could lead to more robust
data. For example, nothing presently prohibits an object of type TemperatureMeasurement from
also being an object of type HumidityMeasurement, although OWL is capable of that

9

expressivity. This could impede semantic data integration, where it may be important to
distinguish not only when classes can overlap, but when they cannot.

Future Work
Often the data available from the local network is insufficient to make certain complex

inferences because sensor networks tend to be very specific in what physical properties they are
measuring. In order to fulfill the data requirements of certain rules, a sensor network might need
to get information outside of its spatial, temporal and knowledge domains. In recent years there
have been several ongoing efforts to develop and standardize interoperable data interfaces to
sensor networks (Tilak et al., 2007; Sensor Observation Service, 2007; Sensor Planning Service,
2007). Coupled with the rising popularity of web services and service oriented architecture in the
scientific community, this gives the potential for sensor data systems to validate and make
inferences beyond the scope of their own knowledge base.

We intend to examine the performance scalability of operating the architecture in a real
time environment. Several questions come to mind for such an effort: (a) what is the impact of
our current over-coupling of the general and specific parts of the CESN ontology; (b) can rule
sets be automatically decomposed or reordered in such a way as to cause validation failure to
happen very quickly, e.g. because certain antecedents are the most likely to be the cause of
rejection of the consequent.

Energy conservation is a central concern for the remote nodes of a sensor network, so
operations not relating directly to a physical measurement should be put off elsewhere. All but
simple inference, such as programming “if-then-else” statements, is computationally expensive.

The most intuitive placement for sensor data inference is at or directly in front of a
natural aggregation point in the sensor network, where higher computational power is required
anyway. For many sensor networks these aggregation points are known as gateways. In general,
a gateway for a sensor network is usually a larger device with more computing power, storage,
and bandwidth than what is available to the sensor or instrument nodes. The gateway makes an
appropriate host for our system because the computational requirements our software take no
consideration of the resource sensitivity of sensor nodes.

There are instances where we would like to expand the geographic scope of reasoning.
Suppose that in Savin Hill Cove we were able to accept either of our two hypotheses, an algal
bloom or re-suspension. These events at the moment are local to a particular part of Boston
Harbor. To offer strength, or to generate further hypotheses, we would like to see if our
inferences hold after performing the same reasoning, or parts thereof, across similar sensor
networks available in Boston Harbor. We hope to incorporate such distributed reasoning in the
future.

Another interesting possibility is to allow rules to influence how the sensor network
behaves based on the discovery of an event. A use case for this might be that on detection of an
algal bloom in one geographic location in the network, it may be important to increase sampling
frequency in areas surrounding the existing location. This allows the network to determine when
it is appropriate the expend more energy for better measurements of interesting events and also it
leads to the possibility of being able to track a moving event across a region.

Lastly, well-designed user interface is needed to enable domain scientists to express their
knowledge. First order logic expressions in Jena RL are too cumbersome for users. A friendly

10

user interface could provide a high level graphical tool for scientists to construct rules.

Summary
We have developed an ontology and a Knowledge Base for sensor networks which

observe coastal ecosystems. It includes mechanisms that can validate sensor observations,
provide ways for scientists or decision makers to test hypotheses about anomalous sensor network
observations and examine the impact on their models of accepting those observations as valid.
The machine reasoning parts of this system are in place and tested with rules for validating data
supplied by heterogeneous instrument packages according to rules relating expected correlations
between the individual sensors and rules describing necessary conditions for the occurrence of
specific ecological events.

Acknowledgements. This work was supported in part by U.S. Department of Energy Our
thanks also to Bernie Gardner for explanation of the models of wave influence on bottom
sediments. We appreciate a number of suggestions made by the reviewers.

Appendix 1. Jena, RDF, and OWL
This section sketches Jena and its use in somewhat more detail than above. For further

details, consult Jena (2009b, 2009c).

RDF and its related languages RDFS (2009) and OWL describe resources by identifying
them with Universal Resource Identifiers (“URIs”) and relations between them. Formally, RDF
has two equivalent definitions. First, it is a set of triples <subject, predicate, object>, where the
subject and object are URIs that identify some resources that are being described, and the
predicate identifies a relation between them. Triples themselves can be declared to be resources,
allowing relationships among triples to be described. This process is called reification, loosely
following terminology from the linguistics discipline. To the extent we should think about a triple
as part of a description of its subject, reification allows the formation of descriptions of
descriptions. In turn, this allows descriptions not only of resources, but also of abstractions about
them, i.e. classes of resources and properties of resources expressed without regard to any
particular explicit resources. That is the role of RDFS and OWL.

A set of triples naturally gives rise to a directed labeled graph, whose nodes are resources
occurring in the triple set, and directed edges from subject to object labeled with the predicate
URI. Conversely given such a graph, we can produce a set of triples whose subject is the (URI of
the) edge source, predicate is the edge label, and object is the (URI of the) target of the edge.
Such a graph provides an equivalent definition of RDF. We have oversimplified these definitions
especially in that RDF includes a rudimentary type system, which is especially important with the
introduction of RDFS, which is an RDF vocabulary that adds classes to the basic notions of RDF.
Thus, a triple <A, rdf:type, B> where B is a class defined in RDFS can be interpreted as saying
that A is a member of B.

Sometimes one of these two expressions of RDF provides the modeler with a better view
than the other. This makes the W3C RDF Validator (W3C, 2009b) a particularly helpful tool for
exploring RDF knowledge models, because it can display both forms.

Finally, RDF has several serializations, including one in XML, called RDF/XML. This is
convenient mainly due to widespread familiarity with XML and availability of many tools to

11

manipulate it. Unlike the graph or triple representations, it often fails to provide human readers
with insights into subtle issues in a model.

The Jena framework provides a Java API for the manipulation of, and reasoning about,
RDF graphs. It supports the representation of these in memory using java objects, on files using
various serialization forms, and in relational databases. It does this based on a unified Java
interface called a Model and provides factory methods for constructing various kinds of Model
sub-interfaces and implementations. One Model implementation is a Jena class named
ModelRDB, which provides, via JDBC, an RDF triple store represented in a relational database,
in our case MySQL. Jena can read an ontology and create the database as a single table with
attributes a subject, predicate and object, each represented by a URI. (A fourth attribute provides
a local identifier for the graph, which we ignore here). In our application, cesn.owl, the main
ontology, models only the sensor and measurement abstractions, which are suitable for persistent
storage, to be reloaded by Jena at the time the reasoning is done. By contrast, a small
oceanevents.owl, which models events such as resuspensions, is loaded when reasoning is to be
done, along with rules and data. Indeed, our current implementation is a web service which can
take these runtime resources as arguments. Jena's treatment of the rules is somewhat different
from its treatment of ontologies, a point we take up in Appendix 2. Here we remark that the Fig. 8
below indicates a model in which cesn.owl was decomposed into a general upper ontology and a
more specific lower ontology modeling particular types of sensors. In fact, for our prototype, both
the general and specific, as well as some instance representations (i.e. assertions about specific
sensors and deployments) in a single ontology, cesn.owl. This is not a scalable model as we
described earlier. We have since refactored the ontology to essentially what Fig. 8 represents
(with the additional sensor types) and have begun to develop a corresponding refactorization of
the Java application in order to generalize it.

12

CESN upper and lower ontology. In Fig. 8, the upper portion of the diagram depicts the
structure of an abstract Sensor class and that of a PhysicalPropertyMeasurement, which is what a
Sensor can measure. Undepicted are representations of Deployment, Instrument, and Platform
which describe how sensors are managed. Those are unused in the reasoning discussed in this
paper. The lower part of the diagram models particular kinds of sensors as subclasses of Sensor.
They have restrictions on what they can measure, and that is restricted to a single thing, which is
an instance of PhysicalProperty. Instances of PhysicalProperty represent actual data, the central
feature of which is a floating-point number identified by the value RDF property of the
PhysicalProperty. In the upper diagram, are five subclasses of PhysicalProperty which are in fact
part of the lower ontology, but repeated in the upper diagram for display convenience. Likewise,

PhysicalProperty appears in the lower ontology for a similar reason. Consequently, without
merging the repetitions, the illustration does not precisely represent an RDF triple graph. Square
boxes are instances, in these cases of class PhysicalProperty.

13

Figure 8. Partial CESN Ontology

The actual ontology presently has several other Sensor types, which measure, e.g.
dissolved oxygen, temperature, and other physical properties.

Below we illustrate a portion of the MySQL table produced by Jena

The first four of these are the easiest to understand:. The first two together say that
ChlorophyllMeasurement is a Class which is a subClass of PhysicalPropertyMeasurement. The
second two similarly describe Fluorometer as a subclass of Sensor. The remainder of this set of
records is devoted to expression of some of the semantics of ChlorophyllMeasurement, namely
that a Flourometer can measure it and only it (i.e. if a Flourometer hasTaken a measurement, then
that measurement is necessarily a ChlorophyllMeasurement. The use of the OWL “restriction”
mechanism to accomplish this is somewhat arcane, including the assignment of URIs to
anonymous classes (here 7fbf and 7fbe). The reader unacquainted with it may consult Allemand
and Hendler (p. 179ff). Finally, we remark that following common practice, in the interests of
readability we have severely abbreviated the URIs that Jena inserts. The above triples in the
relational database correspond to this portion of the RDF/XML expression of the owl ontology:

<owl:Class rdf:about="#ChlorophyllMeasurement">
 <rdfs:subClassOf rdf:resource="#PhysicalPropertyMeasurement"/>
</owl:Class>

 <owl:Class rdf:about="#Flourometer">
 <rdfs:subClassOf rdf:resource="#Sensor"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasTaken"/>
 <owl:allValuesFrom
 rdf:resource="#ChlorophyllMeasurement"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#canMeasure"/>
 <owl:hasValue rdf:resource="#Chlorophyll"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

14

Portion of MySQL Triple Store Produced by Jena from cesn.owl
Subject Predicate Object

cesn:ChlorophyllMeasurement: rdf:type: owl:Class:
cesn:ChlorophyllMeasurement: rdfs:subClassOf: cesn:PhysicalPropertyMeasurement
cesn:Flourometer: rdf:type: owl:Class:
cesn:Flourometer: rdfs:subClassOf: cesn:Sensor:
7fbf rdf:type: owl:Restriction:
cesn:Flourometer: rdfs:subClassOf: 7fbf
7fbf owl:allValuesFrom: cesn:ChlorophyllMeasurement:
7fbf owl:onProperty: cesn:hasTaken:
7fbe rdf:type: owl:Restriction:
cesn:Flourometer: rdfs:subClassOf: 7fbe
cesn:Chlorophyll: rdf:type: cesn:PhysicalProperty:

Appendix 2. Rules
[resuspensionrule:

 (?wavelength rdf:type
http://www.cs.umb.edu/~mcalder/sensor/cesn.owl#WavelengthMeasurement),
 (?depth rdf:type
http://www.cs.umb.edu/~mcalder/sensor/cesn.owl#DepthMeasurement),

 (?wavelength http://www.cs.umb.edu/~mcalder/sensor/cesn.owl#timestamp
?wave_time),
 (?depth http://www.cs.umb.edu/~mcalder/sensor/cesn.owl#timestamp ?
depth_time),
 dateToLong(?wave_time, ?wave_time_long),
 dateToLong(?depth_time, ?depth_time_long),
 now(?now),
 dateToLong(?now, ?now_long),
 difference(?now_long,
"600000"^^http://www.w3.org/2001/XMLSchema#long, ?ten_minutes_ago),
 greaterThan(?wave_time_long, ?ten_minutes_ago),
 greaterThan(?depth_time_long, ?ten_minutes_ago),
 lessThan(?wave_time_long, ?now_long),
 lessThan(?depth_time_long, ?now_long),
 (?wavelength http://www.cs.umb.edu/~mcalder/sensor/cesn.owl#value ?
wave_value),
 (?depth http://www.cs.umb.edu/~mcalder/sensor/cesn.owl#value ?
depth_value),
 quotient(?wave_value,
"4"^^http://www.w3.org/2001/XMLSchema#integer, ?wave_pen),
 lessThan(?wave_pen, ?depth_value) ->
 print('resuspension rule matched'),
 email('scientist@domain.edu', 'possible resuspension event'),
 persist('ResuspensionEvent', now(), 'Savin Hill Cove')]

Informally, this might be expressed as

let
 ?wavelength be a WavelengthMeasurement and
 ?depth be a DepthMeasurement and
 ?wavelength have timestamp wave_time and
 ?depth have timestamp depth_time and
 ?wave_time_long = dateToLong(?wave_time) and
 ?depth_time_long = dateToLong(?depth_time) and
 ?now be the current time and
 ?now_long = dateToLong(?now) and
 ?ten_minutes_ago = ?now_long - 600000 and

 #wave within last ten minutes
 ?ten_minutes_ago > wave_time_long and
 ?ten_minutes_ago > depth_time_long and
 ?wave_time_long < now_long and
 ?depth_time_long < now_long and

15

 #set values from data
 ?wavelength value be ?wave_value and
 ?depth value be depth_value and
 ?wave_pen be ?wave_value/4 and
 ?depth_value < wave_pen then

 #the consequents hold, which here means are executed
 print('resuspension rule matched'),
 email('scientist@domain.edu', 'possible resuspension event'),
 persist('ResuspensionEvent', now(), 'Savin Hill Cove')]

Jena has two subinterfaces of the Model java interface mentioned in Appendix 1. The
first, OntModel, is useful for java representations of RDF ontologies. Jena's ModelRDB class
implements OntModel. This class has methods to produce and access a triple store in relational
database. We use it at system initialization to store cesn.owl and oceanevents.owl in the
persistent triple store represented in the MySQL database. When the reasoning system is
invoked, observation data is acquired and added to the persistent triple store. Both the actual
measurement value and it's type (e.g. ChlorophyllMeasurement) will be represented in the triple
store. CESN reasoning consists of instantiating a second Jena interface, called InfModel
(“Inference Model”) which has access to both the RDF graph now representing both data and
ontologies, as well as to the Jena rules chosen at run time, e.g. the resuspension rule illustrated
above. Invoking the InfModel's validate() causes Jena to determine the logical consistency of the
aggregate RDF graph comprising the ontology triples, the data triples, and the triples inferred by
applying the rules. In the resuspension rule case, validity will result in notification that the event
is consistent with resuspension. In our demonstration software, the observation data is loaded all
at once from legacy data before the reasoning is invoked. However, it is simple to write a
reasoning invocation loop that adds data in real time from an operating sensor network and tests
the rule on each data acquisition. Indeed, we have also implemented a web service that can
accept new data and invoke the validation in response to that arrival. Performance considerations
that we have not yet explored almost certainly would mitigate against repeated access to the
persistent triple store in that case, particularly for problems where a large amount of observation
data is accumulating rapidly.

16

Fig. 9 shows a simplified UML sequence diagram that shows the internal architecture of
the Jena-based components of the system. It omits any indication of whether observation data
should remain only in memory, or remain serialized in the MySQL triple store. That is purely a
configuration question, and depends only on whether a use case has need of re-use of the
observations.

References
Allemang, D., Hendler, J., 2008. Semantic Web for the Working Ontologist; Effective
Modeling in RDFS and OWL. Morgan Kaufmann.

Antoniuo, Harmelen, 2004. A Semantic Web Primer. The MIT Press, Cambridge.

CESN Sensor Ontology, 2008. http://www.cesn.umb.edu/sensor/cesn.owl

CEUR-WS. 2009. /Vol-468 - 1st international workshop on the semantic sensor web.

17

Fig 9 Dataflow

(2009). Heraklion, Crete, Greece, June 1st, 2009. , Corcho ,O., Hauswirth, M. &
Koubarakis, M., eds. 2009(8/28/2009) Retrieved from http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-468/

CSIRO 2009. CSIRO Sensor Ontology.
http://www.w3.org/2005/Incubator/ssn/wiki/images/4/42/SensorOntology20090320.owl.
xml

Del Gobbo, D., Napolitano, M., Callahan, J., Cukic, B., 1998. Experience in Developing
System Requirements Specification for a Sensor Failure Detection and Identification
Scheme," Third IEEE International High-Assurance Systems Engineering Symposium,
1998

Eid, M.; Liscano, R. & El Saddik, A. A Novel Ontology for Sensor Networks Data.
Proceedings of 2006 IEEE International Conference on Computational Intelligence for
Measurement Systems and Applications, La Coruna-Spain, 2006, 12-14

Henson, C. A., Pschorr, J. K., Sheth, A. P., Krishnaprasad Thirunarayan, 2009. SemSOS:
Semantic Sensor Observation Service. International Symposium on Collaborative
Technologies and Systems 2009, Baltimore, MD.

Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M., 2004.
SWRL: A Semantic Web Rule Language Combining OWL and
RuleML. W3C Member Submission.

Jena, 2007a. Jena Rule Language. http://jena.sourceforge.net/inference/index.html#rules

Jena, 2008b. Jena Inference Extensions.
http://jena.sourceforge.net/inference/index.html#RULEextensions

Jena, 2009a. Jena software and documentation. http://jena.sourceforge.net/

Jena, 2009b. http://jena.sourceforge.net/tutorial/RDF_API/index.html

Jena, 2009c. http://jena.sourceforge.net/how-to/model-factory.html.

Jiang, P., 2009. A New Method for Node Fault Detection in Wireless Sensor
 Networks. Sensors, 2009, 9, 1282-1294. doi:10.3390/s90201282

Knauss, John. J. A., 1997/reissued 2005. Introduction to Physical Oceanography/Second
Edition. Waveland Press, Inc.

Liu, Y., Hill, D., Rodriguez, A., Marini, L., Kooper R., Myers J., Wu, X., Minsker, B.,

18

2009. A new framework for on-demand virtualization, repurposing and fusion of
heterogeneous sensors. International Symposium on Collaborative Technologies and
Systems, 2009

MMI, 2009. Marine Metadata Interoperability, Ontology for Devices
http://marinemetadata.org/community/teams/ontdevices.

Open Geo-Spatial Consortium Sensor Observations Service (SOS), 2007.
http://www.opengeospatial.org/standards/sos

Open Geo-Spatial Consortium Sensor Planning Service (SPS), 2007.
http://www.opengeospatial.org/standards/sps

OWL, 2004. Web Ontology Language http://www.w3.org/TR/owl-features/

RDFS, 2009. RDF vocabulary description language 1.0: RDF schema. Retrieved
8/28/2009, 2009, from http://www.w3.org/TR/rdf-schema/

RuleML, 2006. http://www.ruleml.org/

SensorML, 2007. http://www.opengeospatial.org/standards/sensorml

Sheth, A., Henson, C., Sahoo, S. S., 2008. Semantic Sensor Web. IEEE Internet
Computing, 12(4)

Smith, B., Ceusters, W., Klagges, B., Kohler, J., Kumar, A., Lomax, J., Mungall, C.,
Neuhaus, F., Rector, A. L., Rosse, C. Relations in biomedical ontologies. Genome Biol.
2005.

Tilak, Hubbard, Miller, Fountain, 2007. The Ring Buffer Network Bus (RBNB)
DataTurbine Streaming Data Middleware for Environmental Observing Systems. e-
Science ’07, Bangalore, India.

W3C 2009a. W3C Semantic Sensor Network Incubator Group. http://www.w3.org/2005/
Incubator/ssn/wiki/Main_Page

W3C, 2009b. W3C RDF Validation Service. http://www.w3.org/RDF/Validator/

19

	Machine reasoning about anomalous sensor data
	Introduction
	Background on Knowledge Representation
	CESN: An Ontology of Sensors and their Measurements
	Semantic Data Validation and Inferences
	Study Case
	Lessons Learned
	Future Work
	Summary
	Appendix 1. Jena, RDF, and OWL
	Appendix 2. Rules
	References

